Title: | ArcGIS Utility Functions |
---|---|
Description: | Developer oriented utility functions designed to be used as the building blocks of R packages that work with ArcGIS Location Services. It provides functionality for authorization, Esri JSON construction and parsing, as well as other utilities pertaining to geometry and Esri type conversions. To support 'ArcGIS Pro' users, authorization can be done via 'arcgisbinding'. Installation instructions for 'arcgisbinding' can be found at <https://r.esri.com/r-bridge-site/docs/installation.html>. |
Authors: | Josiah Parry [aut, cre] , Kenneth Vernon [ctb] , Martha Bass [ctb] |
Maintainer: | Josiah Parry <[email protected]> |
License: | Apache License (>= 2) |
Version: | 0.3.1 |
Built: | 2025-01-21 17:30:34 UTC |
Source: | https://github.com/r-arcgis/arcgisutils |
Override the default user-agent set by httr2 to indicate that a request came from arcgisutils.
arc_agent(req)
arc_agent(req)
req |
an httr2 request |
an httr2 request object
req <- httr2::request("http://example.com") arc_agent(req)
req <- httr2::request("http://example.com") arc_agent(req)
This function takes a url and creates a basic httr2 request that
adds the user-agent and adds an authorization token to the
X-Esri-Authorization
header.
arc_base_req( url, token = NULL, path = NULL, query = NULL, error_call = rlang::caller_env() )
arc_base_req( url, token = NULL, path = NULL, query = NULL, error_call = rlang::caller_env() )
url |
a valid url that is passed to |
token |
an object of class |
path |
a character vector of paths to be appended to url using |
query |
a named vector or named list of query parameters to be appended to the url using |
error_call |
the caller environment to be used when propagating errors. |
arc_base_req("https://arcgis.com")
arc_base_req("https://arcgis.com")
Returns a scalar character indicating the host to make requests to.
arc_host()
arc_host()
By default, the host is ArcGIS Online <https://www.arcgis.com
>. If the
environment variable ARCGIS_HOST
is set, it will be returned.
A scalar character, "https://www.arcgis.com"
by default.
arc_host()
arc_host()
The function returns the /self
resource from the ArcGIS REST API. The /self
endpoint
returns the view of the portal as seen by the current user, whether anonymous
or signed in.
arc_self_meta(token = arc_token(), error_call = rlang::current_call())
arc_self_meta(token = arc_token(), error_call = rlang::current_call())
token |
an object of class |
error_call |
the caller environment to be used when propagating errors. |
See the endpoint documentation for more details.
The Portal Self response can vary based on whether it's called by a user, an app, or both.
The response includes user and appinfo properties, and the variations in responses are primarily related to these two properties. As the names indicate, the user property includes information about the user making the call, and the appinfo property includes information pertaining to the app that made the call.
A named list.
## Not run: set_arc_token(auth_code()) self <- arc_self_meta() names(self) ## End(Not run)
## Not run: set_arc_token(auth_code()) self <- arc_self_meta() names(self) ## End(Not run)
These functions are used to set, fetch, and check authorization tokens.
arc_token(token = "ARCGIS_TOKEN") set_arc_token(token, ...) unset_arc_token(token = NULL) obj_check_token(token, call = rlang::caller_env()) check_token_has_user(token, call = rlang::caller_env())
arc_token(token = "ARCGIS_TOKEN") set_arc_token(token, ...) unset_arc_token(token = NULL) obj_check_token(token, call = rlang::caller_env()) check_token_has_user(token, call = rlang::caller_env())
token |
for |
... |
named arguments to set |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
It is possible to have multiple authorization tokens in one session. These functions assist you in managing them.
arc_token()
is used to fetch tokens by name. The default token is ARCGIS_TOKEN
.
However, they can be any valid character scalar. set_arc_token()
will create
store a token with the name ARCGIS_TOKEN
. However, you can alternatively
set the tokens by name using a key-value pair. The key is what you would pass
to arc_token()
to fetch the httr2_token
object. To remove a token that has
been set, use unset_arc_token()
.
obj_check_token()
is a developer oriented function that can be used to check
if an object is indeed an httr2_token
. To check if a token has expired,
validate_or_refresh_token()
will do so.
check_token_has_user()
is a developer oriented function that checks to see
if a token has a username
field associated with it.
For developers:
set_arc_token()
uses a package level environment to store the tokens. The
tokens are fetched from the environment using arc_token()
.
# create fake tokens token_a <- httr2::oauth_token("1234", arcgis_host = arc_host()) token_b <- httr2::oauth_token("abcd", arcgis_host = arc_host()) # set token to the default location set_arc_token(token_a) # fetch token from the default location arc_token() # set token by name set_arc_token(org_a = token_a, org_b = token_b) # fetch token by name arc_token("org_a") arc_token("org_b") # unset tokens unset_arc_token() unset_arc_token(c("org_a", "org_b"))
# create fake tokens token_a <- httr2::oauth_token("1234", arcgis_host = arc_host()) token_b <- httr2::oauth_token("abcd", arcgis_host = arc_host()) # set token to the default location set_arc_token(token_a) # fetch token from the default location arc_token() # set token by name set_arc_token(org_a = token_a, org_b = token_b) # fetch token by name arc_token("org_a") arc_token("org_b") # unset tokens unset_arc_token() unset_arc_token(c("org_a", "org_b"))
as_esri_geometry()
converts an sfg
object to a EsriJSON Geometry object as a string.
as_esri_geometry(x, crs = NULL, call = rlang::caller_env())
as_esri_geometry(x, crs = NULL, call = rlang::caller_env())
x |
an object of class |
crs |
the coordinate reference system. It must be interpretable by |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
See as_featureset()
and as_features()
for converting sfc
and sf
objects into EsriJSON.
a scalar string
library(sf) # POINT # create sfg points xy <- st_point(c(1, 2)) xyz <- st_point(c(1, 2, 3)) xym <- st_point(c(1, 2, 3), dim = "XYM") xyzm <- st_point(c(1, 2, 3, 4)) as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_multipoint(matrix(x, ncol = 2)) xyz <- st_multipoint(matrix(x, ncol = 3)) xym <- st_multipoint(matrix(x, ncol = 3), dim = "XYM") xyzm <- st_multipoint(matrix(x, ncol = 4), dim = "XYM") as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # LINESTRING xy <- st_linestring(matrix(x, ncol = 2)) xyz <- st_linestring(matrix(x, ncol = 3)) xym <- st_linestring(matrix(x, ncol = 3), dim = "XYM") xyzm <- st_linestring(matrix(x, ncol = 4), dim = "XYM") as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTILINESTRING as_esri_geometry(st_multilinestring(list(xy, xy))) as_esri_geometry(st_multilinestring(list(xyz, xyz))) as_esri_geometry(st_multilinestring(list(xym, xym))) as_esri_geometry(st_multilinestring(list(xyzm, xyzm))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_polygon(list(coords[, 1:2])) xyz <- st_polygon(list(coords[, 1:3])) xym <- st_polygon(list(coords[, 1:3]), dim = "XYM") xyzm <- st_polygon(list(coords)) as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTIPOLYGON as_esri_geometry(st_multipolygon(list(xy, xy))) as_esri_geometry(st_multipolygon(list(xyz, xyz))) as_esri_geometry(st_multipolygon(list(xym, xym))) as_esri_geometry(st_multipolygon(list(xyzm, xyzm)))
library(sf) # POINT # create sfg points xy <- st_point(c(1, 2)) xyz <- st_point(c(1, 2, 3)) xym <- st_point(c(1, 2, 3), dim = "XYM") xyzm <- st_point(c(1, 2, 3, 4)) as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_multipoint(matrix(x, ncol = 2)) xyz <- st_multipoint(matrix(x, ncol = 3)) xym <- st_multipoint(matrix(x, ncol = 3), dim = "XYM") xyzm <- st_multipoint(matrix(x, ncol = 4), dim = "XYM") as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # LINESTRING xy <- st_linestring(matrix(x, ncol = 2)) xyz <- st_linestring(matrix(x, ncol = 3)) xym <- st_linestring(matrix(x, ncol = 3), dim = "XYM") xyzm <- st_linestring(matrix(x, ncol = 4), dim = "XYM") as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTILINESTRING as_esri_geometry(st_multilinestring(list(xy, xy))) as_esri_geometry(st_multilinestring(list(xyz, xyz))) as_esri_geometry(st_multilinestring(list(xym, xym))) as_esri_geometry(st_multilinestring(list(xyzm, xyzm))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_polygon(list(coords[, 1:2])) xyz <- st_polygon(list(coords[, 1:3])) xym <- st_polygon(list(coords[, 1:3]), dim = "XYM") xyzm <- st_polygon(list(coords)) as_esri_geometry(xy) as_esri_geometry(xyz) as_esri_geometry(xym) as_esri_geometry(xyzm) # MULTIPOLYGON as_esri_geometry(st_multipolygon(list(xy, xy))) as_esri_geometry(st_multipolygon(list(xyz, xyz))) as_esri_geometry(st_multipolygon(list(xym, xym))) as_esri_geometry(st_multipolygon(list(xyzm, xyzm)))
Given an sf or sfc object create a list that represents the extent of the
object. The result of this function can be parsed directly into json using
jsonify::to_json(x, unbox = TRUE)
or included into a list as the extent
component that will be eventually converted into json using the above function.
as_extent(x, crs = sf::st_crs(x), call = rlang::caller_env())
as_extent(x, crs = sf::st_crs(x), call = rlang::caller_env())
x |
an sf or sfc object |
crs |
the CRS of the object. Must be parsable by |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
An extent json object. Use jsonify::to_json(x, unbox = TRUE)
to convert
to json.
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE) as_extent(nc)
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE) as_extent(nc)
These functions create an array of Esri Feature objects.
Each feature consists of a geometry and attribute field.
The result of as_esri_features()
is a JSON array of Features whereas
as_features()
is a list that represents the same JSON array. Using
jsonify::to_json(as_features(x), unbox = TRUE)
will result in the same
JSON array.
as_features(x, crs = sf::st_crs(x), call = rlang::caller_env()) as_esri_features(x, crs = sf::st_crs(x), call = rlang::caller_env())
as_features(x, crs = sf::st_crs(x), call = rlang::caller_env()) as_esri_features(x, crs = sf::st_crs(x), call = rlang::caller_env())
x |
an object of class |
crs |
the coordinate reference system. It must be interpretable by |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
Either a scalar string or a named list.
library(sf) # POINT # create sfg points xy <- st_sfc(st_point(c(1, 2))) xyz <- st_sfc(st_point(c(1, 2, 3))) xym <- st_sfc(st_point(c(1, 2, 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_sfc(st_multipoint(matrix(x, ncol = 2))) xyz <- st_sfc(st_multipoint(matrix(x, ncol = 3))) xym <- st_sfc(st_multipoint(matrix(x, ncol = 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # LINESTRING xy <- st_sfc(st_linestring(matrix(x, ncol = 2))) xyz <- st_sfc(st_linestring(matrix(x, ncol = 3))) xym <- st_sfc(st_linestring(matrix(x, ncol = 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTILINESTRING as_esri_features(st_sfc(st_multilinestring(list(xy[[1]], xy[[1]])))) as_esri_features(st_sfc(st_multilinestring(list(xyz[[1]], xyz[[1]])))) as_esri_features(st_sfc(st_multilinestring(list(xym[[1]], xym[[1]])))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_sfc(st_polygon(list(coords[, 1:2]))) xyz <- st_sfc(st_polygon(list(coords[, 1:3]))) xym <- st_sfc(st_polygon(list(coords[, 1:3]), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTIPOLYGON as_esri_features(st_sfc(st_multipolygon(list(xy[[1]], xy[[1]])))) as_esri_features(st_sfc(st_multipolygon(list(xyz[[1]], xyz[[1]])))) as_esri_features(st_sfc(st_multipolygon(list(xym[[1]], xym[[1]]))))
library(sf) # POINT # create sfg points xy <- st_sfc(st_point(c(1, 2))) xyz <- st_sfc(st_point(c(1, 2, 3))) xym <- st_sfc(st_point(c(1, 2, 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_sfc(st_multipoint(matrix(x, ncol = 2))) xyz <- st_sfc(st_multipoint(matrix(x, ncol = 3))) xym <- st_sfc(st_multipoint(matrix(x, ncol = 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # LINESTRING xy <- st_sfc(st_linestring(matrix(x, ncol = 2))) xyz <- st_sfc(st_linestring(matrix(x, ncol = 3))) xym <- st_sfc(st_linestring(matrix(x, ncol = 3), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTILINESTRING as_esri_features(st_sfc(st_multilinestring(list(xy[[1]], xy[[1]])))) as_esri_features(st_sfc(st_multilinestring(list(xyz[[1]], xyz[[1]])))) as_esri_features(st_sfc(st_multilinestring(list(xym[[1]], xym[[1]])))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_sfc(st_polygon(list(coords[, 1:2]))) xyz <- st_sfc(st_polygon(list(coords[, 1:3]))) xym <- st_sfc(st_polygon(list(coords[, 1:3]), dim = "XYM")) as_esri_features(xy) as_esri_features(xyz) as_esri_features(xym) # MULTIPOLYGON as_esri_features(st_sfc(st_multipolygon(list(xy[[1]], xy[[1]])))) as_esri_features(st_sfc(st_multipolygon(list(xyz[[1]], xyz[[1]])))) as_esri_features(st_sfc(st_multipolygon(list(xym[[1]], xym[[1]]))))
These functions create an Esri FeatureSet object. A FeatureSet contains an inner array of features as well as additional metadata about the the collection such as the geometry type, spatial reference, and object ID field.
as_featureset(x, crs = sf::st_crs(x), call = rlang::caller_env()) as_esri_featureset(x, crs = sf::st_crs(x), call = rlang::caller_env())
as_featureset(x, crs = sf::st_crs(x), call = rlang::caller_env()) as_esri_featureset(x, crs = sf::st_crs(x), call = rlang::caller_env())
x |
an object of class |
crs |
the coordinate reference system. It must be interpretable by |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
library(sf) # POINT # create sfg points xy <- st_sfc(st_point(c(1, 2))) xyz <- st_sfc(st_point(c(1, 2, 3))) xym <- st_sfc(st_point(c(1, 2, 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_sfc(st_multipoint(matrix(x, ncol = 2))) xyz <- st_sfc(st_multipoint(matrix(x, ncol = 3))) xym <- st_sfc(st_multipoint(matrix(x, ncol = 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # LINESTRING xy <- st_sfc(st_linestring(matrix(x, ncol = 2))) xyz <- st_sfc(st_linestring(matrix(x, ncol = 3))) xym <- st_sfc(st_linestring(matrix(x, ncol = 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTILINESTRING as_esri_featureset(st_sfc(st_multilinestring(list(xy[[1]], xy[[1]])))) as_esri_featureset(st_sfc(st_multilinestring(list(xyz[[1]], xyz[[1]])))) as_esri_featureset(st_sfc(st_multilinestring(list(xym[[1]], xym[[1]])))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_sfc(st_polygon(list(coords[, 1:2]))) xyz <- st_sfc(st_polygon(list(coords[, 1:3]))) xym <- st_sfc(st_polygon(list(coords[, 1:3]), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTIPOLYGON as_esri_featureset(st_sfc(st_multipolygon(list(xy[[1]], xy[[1]])))) as_esri_featureset(st_sfc(st_multipolygon(list(xyz[[1]], xyz[[1]])))) as_esri_featureset(st_sfc(st_multipolygon(list(xym[[1]], xym[[1]]))))
library(sf) # POINT # create sfg points xy <- st_sfc(st_point(c(1, 2))) xyz <- st_sfc(st_point(c(1, 2, 3))) xym <- st_sfc(st_point(c(1, 2, 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTIPOINT # vector to create matrix points set.seed(0) x <- rnorm(12) xy <- st_sfc(st_multipoint(matrix(x, ncol = 2))) xyz <- st_sfc(st_multipoint(matrix(x, ncol = 3))) xym <- st_sfc(st_multipoint(matrix(x, ncol = 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # LINESTRING xy <- st_sfc(st_linestring(matrix(x, ncol = 2))) xyz <- st_sfc(st_linestring(matrix(x, ncol = 3))) xym <- st_sfc(st_linestring(matrix(x, ncol = 3), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTILINESTRING as_esri_featureset(st_sfc(st_multilinestring(list(xy[[1]], xy[[1]])))) as_esri_featureset(st_sfc(st_multilinestring(list(xyz[[1]], xyz[[1]])))) as_esri_featureset(st_sfc(st_multilinestring(list(xym[[1]], xym[[1]])))) # POLYGON coords <- rbind( c(0, 0, 0, 1), c(0, 1, 0, 1), c(1, 1, 1, 1), c(1, 0, 1, 1), c(0, 0, 0, 1) ) xy <- st_sfc(st_polygon(list(coords[, 1:2]))) xyz <- st_sfc(st_polygon(list(coords[, 1:3]))) xym <- st_sfc(st_polygon(list(coords[, 1:3]), dim = "XYM")) as_esri_featureset(xy) as_esri_featureset(xyz) as_esri_featureset(xym) # MULTIPOLYGON as_esri_featureset(st_sfc(st_multipolygon(list(xy[[1]], xy[[1]])))) as_esri_featureset(st_sfc(st_multipolygon(list(xyz[[1]], xyz[[1]])))) as_esri_featureset(st_sfc(st_multipolygon(list(xym[[1]], xym[[1]]))))
These functions are used to generate list objects that can be converted into json objects that are used in REST API requests. Notably they are used for adding R objects as items to a portal.
as_layer( x, name, title, layer_definition = as_layer_definition(x, name, "object_id", infer_esri_type(x)), id = NULL, layer_url = NULL, legend_url = NULL, popup_info = NULL, call = rlang::caller_env() ) as_layer_definition( x, name, object_id_field, fields = infer_esri_type(x), display_field = NULL, drawing_info = NULL, has_attachments = FALSE, max_scale = 0, min_scale = 0, templates = NULL, type_id_field = NULL, types = NULL, call = rlang::caller_env() ) as_feature_collection( layers = list(), show_legend = TRUE, call = rlang::caller_env() )
as_layer( x, name, title, layer_definition = as_layer_definition(x, name, "object_id", infer_esri_type(x)), id = NULL, layer_url = NULL, legend_url = NULL, popup_info = NULL, call = rlang::caller_env() ) as_layer_definition( x, name, object_id_field, fields = infer_esri_type(x), display_field = NULL, drawing_info = NULL, has_attachments = FALSE, max_scale = 0, min_scale = 0, templates = NULL, type_id_field = NULL, types = NULL, call = rlang::caller_env() ) as_feature_collection( layers = list(), show_legend = TRUE, call = rlang::caller_env() )
x |
an object of class |
name |
a scalar character of the name of the layer. Must be unique. |
title |
A user-friendly string title for the layer that can be used in a table of contents. |
layer_definition |
a layer definition list as created by |
id |
A number indicating the index position of the layer in the WMS or map service. |
layer_url |
default |
legend_url |
default |
popup_info |
default |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
object_id_field |
a scalar character vector indicating the name of the object ID field in the dataset. |
fields |
a data.frame describing the fields in |
display_field |
default |
drawing_info |
default |
has_attachments |
default |
max_scale |
default |
min_scale |
default |
templates |
default |
type_id_field |
default |
types |
An array of type objects available for the dataset.
This is used when the |
layers |
a list of layers as created by |
show_legend |
default |
A featureCollection
defines a layer of features that will be stored on a web map.
It consists of an array of layer
s. The layer
contains the features
(attributes and geometries) as a featureSet
(see as_esri_featureset()
) and
additional metadata which is stored in the layerDefinition
object. The
layerDefinition
most importantly documents the fields in the object, the object ID,
and additional metadata such as name, title, and display scale.
Additional documentation for these json object:
A list object containing the required fields for each respective json type.
The results can be converted to json using jsonify::to_json(x, unbox = TRUE)
ld <- as_layer_definition(iris, "iris", "objectID") l <- as_layer(iris, "iris name", "Iris Title") fc <- as_feature_collection(layers = list(l))
ld <- as_layer_definition(iris, "iris", "objectID") l <- as_layer(iris, "iris name", "Iris Title") fc <- as_feature_collection(layers = list(l))
Authorize your R session to connect to an ArcGIS Portal. See details.
auth_code(client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host()) auth_client( client = Sys.getenv("ARCGIS_CLIENT"), secret = Sys.getenv("ARCGIS_SECRET"), host = arc_host(), expiration = 120 ) auth_binding() auth_user( username = Sys.getenv("ARCGIS_USER"), password = Sys.getenv("ARCGIS_PASSWORD"), host = arc_host(), expiration = 60 ) auth_key(api_key = Sys.getenv("ARCGIS_API_KEY"), host = arc_host()) refresh_token(token, client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host()) validate_or_refresh_token( token, client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host(), refresh_threshold = 0, call = rlang::caller_env() )
auth_code(client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host()) auth_client( client = Sys.getenv("ARCGIS_CLIENT"), secret = Sys.getenv("ARCGIS_SECRET"), host = arc_host(), expiration = 120 ) auth_binding() auth_user( username = Sys.getenv("ARCGIS_USER"), password = Sys.getenv("ARCGIS_PASSWORD"), host = arc_host(), expiration = 60 ) auth_key(api_key = Sys.getenv("ARCGIS_API_KEY"), host = arc_host()) refresh_token(token, client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host()) validate_or_refresh_token( token, client = Sys.getenv("ARCGIS_CLIENT"), host = arc_host(), refresh_threshold = 0, call = rlang::caller_env() )
client |
an OAuth 2.0 developer application client ID. By default uses the
environment variable |
host |
default |
secret |
an OAuth 2.0 developer application secret. By default uses the environment
variable |
expiration |
the duration of the token in minutes. |
username |
default |
password |
default |
api_key |
default |
token |
an |
refresh_threshold |
default |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
ArcGIS Online and Enterprise Portals utilize OAuth2 authorization via their REST APIs.
auth_code()
is the recommend OAuth2 workflow for interactive sessions
auth_client()
is the recommended OAuth2 workflow for non-interactive sessions
auth_user()
uses legacy username and password authorization using the generateToken
endpoint. It is only recommended for legacy systems that do not implement OAuth2.
auth_binding()
fetches a token from the active portal set by arcgisbinding
. Uses arcgisbinding::arc.check_portal()
to extract the authorization token. Recommended if using arcgisbinding.
an httr2_token
## Not run: auth_code() auth_client() auth_user() auth_key() auth_binding() ## End(Not run)
## Not run: auth_code() auth_client() auth_user() auth_key() auth_binding() ## End(Not run)
General utility functions
compact(.x) a %||% b check_dots_named(dots, call = rlang::caller_env())
compact(.x) a %||% b check_dots_named(dots, call = rlang::caller_env())
.x |
a list |
a |
an R object |
b |
an R object |
dots |
a list collected from dots via |
call |
default |
compact()
removes any NULL
list elements
%||%
is a special pipe operator that returns b
if a
is NULL
compact()
a list
%||%
the first non-null item or NULL
if both are NULL
# remove null elements compact(list(a = NULL, b = 1)) # if NULL return rhs NULL %||% 123 # if not NULL return lhs 123 %||% NULL
# remove null elements compact(list(a = NULL, b = 1)) # if NULL return rhs NULL %||% 123 # if not NULL return lhs 123 %||% NULL
The requests responses from ArcGIS don't return the status code in the response itself but rather from the body in the json. This function checks for the existence of an error. If an error is found, the contents of the error message are bubbled up.
detect_errors(response, error_call = rlang::caller_env()) catch_error(response, error_call = rlang::caller_env())
detect_errors(response, error_call = rlang::caller_env()) catch_error(response, error_call = rlang::caller_env())
response |
for |
error_call |
default |
Nothing. Used for it's side effect. If an error code is encountered in the response an error is thrown with the error code and the error message.
## Not run: response <- list( error = list( code = 400L, message = "Unable to generate token.", details = "Invalid username or password." ) ) detect_errors(response) ## End(Not run)
## Not run: response <- list( error = list( code = 400L, message = "Unable to generate token.", details = "Invalid username or password." ) ) detect_errors(response) ## End(Not run)
Given an sfc or sfg object determine what dimensions are represented.
determine_dims(x) has_m(x) has_z(x)
determine_dims(x) has_m(x) has_z(x)
x |
an object of class |
determine_dims()
returns a scalar character of the value "xy"
, "xyz"
, or "xyzm"
depending
on what dimensions are represented.
has_m()
and has_z()
returns a logical scalar of TRUE
or FALSE
if the
geometry has a Z or M dimension.
geo <- sf::st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)[["geometry"]] determine_dims(geo) has_z(geo) has_m(geo)
geo <- sf::st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)[["geometry"]] determine_dims(geo) has_z(geo) has_m(geo)
Takes an sf
or sfc
object and returns the appropriate Esri geometry type.
determine_esri_geo_type(x, call = rlang::caller_env())
determine_esri_geo_type(x, call = rlang::caller_env())
x |
an object of class |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
POINT
: esriGeometryPoint
MULTIPOINT
: esriGeometryMultipoint
LINESTRING
: esriGeometryPolyline
MULTILINESTRING
: esriGeometryPolyline
POLYGON
: esriGeometryPolygon
MULTIPOLYGON
: esriGeometryPolygon
returns a character scalar of the corresponding Esri geometry type
determine_esri_geo_type(sf::st_point(c(0, 0)))
determine_esri_geo_type(sf::st_point(c(0, 0)))
Utility functions for feature service metadata.
fetch_layer_metadata(url, token = NULL, call = rlang::caller_env())
fetch_layer_metadata(url, token = NULL, call = rlang::caller_env())
url |
the url of the item. |
token |
an |
call |
default |
fetch_layer_metadata()
given a request, fetches the metadata by setting
the query parameter f=json
returns a list object
# url is broken into parts to fit within 100 characters to avoid CRAN notes url_parts <- c( "https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services", "/USA_Counties_Generalized_Boundaries/FeatureServer/0" ) furl <- paste0(url_parts, collapse = "") meta <- fetch_layer_metadata(furl) head(names(meta))
# url is broken into parts to fit within 100 characters to avoid CRAN notes url_parts <- c( "https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services", "/USA_Counties_Generalized_Boundaries/FeatureServer/0" ) furl <- paste0(url_parts, collapse = "") meta <- fetch_layer_metadata(furl) head(names(meta))
Infers Esri field types from R objects.
infer_esri_type( .data, arg = rlang::caller_arg(.data), call = rlang::caller_env() ) get_ptype(field_type, n = 1, call = rlang::caller_env()) ptype_tbl(fields, n = 0, call = rlang::caller_env()) remote_ptype_tbl(fields, call = rlang::caller_env())
infer_esri_type( .data, arg = rlang::caller_arg(.data), call = rlang::caller_env() ) get_ptype(field_type, n = 1, call = rlang::caller_env()) ptype_tbl(fields, n = 0, call = rlang::caller_env()) remote_ptype_tbl(fields, call = rlang::caller_env())
.data |
an object of class |
arg |
An argument name in the current function. |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
field_type |
a character of a desired Esri field type. See details for more. |
n |
the number of rows to create in the prototype table |
fields |
a data.frame containing, at least, the columns |
get_ptype()
takes a scalar character containing the Esri field type and returns a prototype of the pertinent R type
infer_esri_type()
takes a data frame-like object and infers the Esri field type from it.
remote_ptype_tbl()
takes a data frame of fields as derived from list_fields()
and
creates a lazy table proto type intended to be used with dbplyr
integration
Esri field types are mapped as
esriFieldTypeSmallInteger
: integer
esriFieldTypeSingle
: double
esriFieldTypeGUID
: integer
esriFieldTypeOID
: integer
esriFieldTypeInteger
: integer
esriFieldTypeBigInteger
: double
esriFieldTypeDouble
: double
esriFieldTypeString
: character
esriFieldTypeDate
: date
R types are mapped as
double
: esriFieldTypeDouble
integer
: esriFieldTypeInteger
character
: esriFieldTypeString
date
: esriFieldTypeDate
raw
: esriFieldTypeBlob
get_pytpe()
returns an object of the class of the prototype.
ptype_tbl()
takes a data.frame
with columns name
and type
and creates an empty data.frame
with the corresponding columns and R types
remote_ptype_tbl()
provides the results of ptype_tbl()
as a lazy data frame from the dbplyr
package.
infer_esri_ptype()
returns a data.frame
with columns name
, type
, alias
, nullable
, and editable
columns
This resembles that of the fields
returned by a FeatureService
get_ptype("esriFieldTypeDouble") inferred <- infer_esri_type(iris) ptype_tbl(inferred)
get_ptype("esriFieldTypeDouble") inferred <- infer_esri_type(iris) ptype_tbl(inferred)
Esri date fields are represented as milliseconds from the Unix Epoch.
is_date(x, tz) date_to_ms(x, tz = "UTC") from_esri_date(x)
is_date(x, tz) date_to_ms(x, tz = "UTC") from_esri_date(x)
x |
an object of class |
tz |
a character string. The time zone specification to be used
for the conversion, if one is required. System-specific (see
time zones), but |
is_date()
: checks if an object is a Date
or POSIXt
class object.
date_to_ms()
converts a date object to milliseconds from the Unix Epoch in the specified time zone.
is_date()
returns a logical scalar
date_to_ms()
returns a numeric vector of times in milliseconds from the Unix Epoch in the specified time zone.
today <- Sys.Date() is_date(today) date_to_ms(today)
today <- Sys.Date() is_date(today) date_to_ms(today)
Parses an Esri FeatureSet JSON object into an R object. If there is no geometry present, a data.frame is returned. If there is geometry, an sf object is returned.
parse_esri_json(string, ..., call = rlang::caller_env())
parse_esri_json(string, ..., call = rlang::caller_env())
string |
the raw Esri JSON string. |
... |
additional arguments passed to |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
A data.frame. If geometry is found, returns an sf object.
esri_json <- '{ "geometryType": "esriGeometryPolygon", "spatialReference": { "wkid": 4326 }, "hasZ": false, "hasM": false, "features": [ { "attributes": { "id": 1 }, "geometry": { "rings": [ [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0] ] ] } } ] }' parse_esri_json(esri_json)
esri_json <- '{ "geometryType": "esriGeometryPolygon", "spatialReference": { "wkid": 4326 }, "hasZ": false, "hasM": false, "features": [ { "attributes": { "id": 1 }, "geometry": { "rings": [ [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0] ] ] } } ] }' parse_esri_json(esri_json)
A general function that takes a list of data.frame
s and returns a single
and combines them into a single object. It will use the fastest method
available. In order this is collapse::rowbind()
, data.table::rbindlist()
,
vctrs::list_unchop()
, then do.call(rbind.data.frame, x)
.
rbind_results(x, call = rlang::current_env(), .ptype = data.frame())
rbind_results(x, call = rlang::current_env(), .ptype = data.frame())
x |
a list where each element is a |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
.ptype |
currently unused. Reserved for a future release. |
If all items in the list are data.frame
s, then the result will be a data.frame
.
If all elements are an sf
object, then the result will be an sf
object.
If the items are mixed, the result will be a data.frame
.
If any items are NULL
, then an attribute null_elements
will be attached
to the result. The attribute is an integer vector of the indices that
were NULL
.
see details.
x <- head(iris) res <- rbind_results(list(x, NULL, x)) attr(res, "null_elements")
x <- head(iris) res <- rbind_results(list(x, NULL, x)) attr(res, "null_elements")
Takes a representation of a CRS and ensures that it is a valid one. The CRS
is validated using sf::st_crs()
if it cannot be validated, a null CRS is returned.
validate_crs(crs, arg = rlang::caller_arg(crs), call = rlang::caller_env())
validate_crs(crs, arg = rlang::caller_arg(crs), call = rlang::caller_env())
crs |
a representation of a coordinate reference system. |
arg |
An argument name in the current function. |
call |
The execution environment of a currently running
function, e.g. You only need to supply Can also be For more information about error calls, see Including function calls in error messages. |
See sf::st_crs()
for more details on valid representations.
Returns a list of length 1 with an element named spatialReference
which is itself
a named list.
If the provided CRS returns a valid well-known ID (WKID) spatialReference
contains
a named element called wkid
which is the integer value of the WKID. If the WKID
is not known but the CRS returned is a valid well-known text representation the wkid
field
is NA
and another field wkt
contains the valid wkt.
# using epsg code integer or string representation validate_crs(3857) validate_crs("EPSG:4326") # using a custom proj4 string proj4string <- "+proj=longlat +datum=WGS84 +no_defs" crs <- validate_crs(proj4string) # using wkt2 (from above result) crs <- validate_crs(crs$spatialReference$wkt)
# using epsg code integer or string representation validate_crs(3857) validate_crs("EPSG:4326") # using a custom proj4 string proj4string <- "+proj=longlat +datum=WGS84 +no_defs" crs <- validate_crs(proj4string) # using wkt2 (from above result) crs <- validate_crs(crs$spatialReference$wkt)